
A Structural Model of

Establishment and Industry Evolution:

Evidence from Chile∗

MURAT ŞEKER†
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1 Introduction

Empirical research using longitudinal firm or plant level data has shown strong regularities in

establishment and industry evolution. Recently, researchers have started to build structural

models to explain these regularities. However, being so stylized has made it difficult for these

models to confront the micro-level data in a more formal quantitative analysis. In this paper, I

present a model that explains several salient features of the data that had eluded the existing

models. Furthermore, using a panel of Chilean Manufacturers, I provide an estimation of the

model parameters and show its quantitative success in fitting the data.

This paper builds on the stylized model of establishment and industry evolution presented by

Klette and Kortum (2004). In their model, an establishment is defined as a collection of prod-

ucts and each product evolves independently. Every product owned by an establishment can

give rise to a new product as a result of a stochastic innovation process or can be lost to a com-

petitor. This birth and death process for the number of products is the source of establishment

and industry evolution. Through this parsimonious model of innovation, they explain various

stylized facts that relate R&D, productivity, patenting, and establishment growth. Their model

also generates heterogeneity in establishments’ sizes and a skewed size distribution.

However, the Klette and Kortum (2004) model fails to capture several important features

of the data. Through a parsimonious extension of their model, I succeed in explaining these

features which are: the thick right tail of the size distribution, the independent relation between

age, size and the hazard rate of exit, the relation between the variance of growth rate and size,

and the pre-exit behavior of establishments in a birth cohort. At the root of the improvements

over Klette and Kortum (2004) model is the introduction of heterogeneity in producers’ effi-

ciency levels1. As a result of this heterogeneity, producers differ from each other in both their

innovation rates and the revenues generated from each product.

The improvements and how they emerge through this extension can be explained as follows.

The first improvement is in fitting the size distribution. In the model, more efficient producers

are more innovative and they generate more revenue per product. This complementarity be-

tween the innovation rate and the revenue magnifies the variation among establishments’ sizes

1Lentz and Mortensen (2008) also incorporates heterogeneity into Klette and Kortum (2004) model in a

different way which I explain through the paper, is not sufficient for the improvements I specify here.
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and leads to a closer fit to the observed size distribution, especially in the thickness of the right

tail. On the other hand, the size distribution derived in the Klette and Kortum (2004) model

is logarithmic. This distribution is skewed but the tail is much shorter than the one observed

in the data. Through introducing random sized products, Lentz and Mortensen (2008) improve

the size distribution that emerges in Klette and Kortum (2004), but still they cannot capture

the thickness of the right tail. My model succeeds this without postulating any exogenous

variation in the size of the products.

The second improvement caused by this extension is on the relation between the variance of

growth rate and size. This relation has drawn much less attention than the relation between the

growth rate and size, both in theoretical and empirical research. Some recent work by Stanley

et al (1996), Bottazzi (2001), and Sutton (2002, 2007) illustrate that variance of growth rates

declines at a rather slow rate as size of an establishment increases. The mixing of producers

with different efficiency levels at any size allows my model to explain the flatness of this relation.

On the other hand, the models of Klette and Kortum (2004) and Klepper and Thompson (2007)

yield too steep slopes.

The third improvement of the model is on the independent relation between size, age, and

the hazard rate of exit. Evidence shows that as size and age increase, the hazard rate of exit

decreases2. In my model, exit is determined by the number of products owned by the producer.

Mixing of establishments with different efficiency-types allows age and size to be correlated with

the number of products through different channels. This yields a negative relation between the

hazard rate of exit and size conditional on age and a negative relation between the hazard

rate of exit and age conditional on size. Klette and Kortum (2004) and Luttmer (2007) can

only explain the relation between the hazard rate of exit and size3 and Klepper and Thompson

(2007) explain both relations through introducing random sized products.

The final improvement is on the pre-exit behavior of establishments within a birth cohort.

Evidence on Chilean manufacturers shows that there exists size dispersion among entrants and

on average, establishments with larger startup sizes live longer than the smaller ones. I explain

these observations through type-heterogeneity. All entrants start with a single product. But,

2This relation has been demonstrated by several studies including Dunne, Roberts, Samuelson (1988) and

Evans (1987a, 1987b).
3Without conditioning on size, both models can generate a negative relation between the hazard rate of exit

and age.
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more efficient producers have larger startup sizes. Moreover, they are more innovative and face

lower hazard rate of exit. As a result, conditional on when they will exit, larger producers

survive longer.

Another novel feature of this paper is its quantitative strength. Most of the current models

derive inferences about the heterogeneity in producer behavior by analyzing broadly defined

sectors such as manufacturing, wholesale and retail, or service. Part of this observed hetero-

geneity could be purely due to different industry structures instead of the intrinsic efficiency

differences across producers. To have a better identification of the source of heterogeneity

across producers, I estimate the model’s parameters separately on the five biggest 3-digit man-

ufacturing industries in Chile. These industries differ in their size distributions, growth rate

distributions, and entry rates. Estimation results show that model parameters can successfully

explain different industry structures.

This paper also gives insight into the persistent differences in the performances of the

establishments. It incorporates intrinsic exogenous efficiency differences that are determined

before entering the economy and idiosyncratic innovations that endogenously accumulate during

the life of an establishment. Both features have been used extensively to explain industry

dynamics. My model incorporates both features in the producer’s optimization problem. At

the early stages of life, efficiency differences are the main contributors of the variation in size. At

older ages, due to the selection of more efficient producers, contribution of the past innovations

exceeds the contribution of the efficiency differences.

After capturing various features of the data, I perform counterfactual experiments. I analyze

two policies that affect the innovation capacities of the producers. The model allows me to

analyze how the policies affect producers at different sizes. In the first experiment, I look at

the effects of an R&D subsidy. In the second experiment, I increase product market competition

in the economy. In the model, innovations are made by incumbent producers which is in contrast

with the most previous models of creative destruction. R&D subsidies cause static losses in

establishments’ revenues but increase their growth rates. In the second experiment, higher

product market competition decreases revenues and growth rates of all but the most efficient

producers. Most efficient producers benefit from tougher competition by gaining more revenues

and obtaining higher growth rates.
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The rest of the paper is organized as follows. Next, I summarize the related literature.

Following that, I formulate the model and show its qualitative implications. Then, I estimate

the model using simulated method of moments and discuss the results. Following that, I per-

form a variance decomposition analysis of establishments’ sizes and perform the counterfactual

experiments. I finish the paper with some concluding remarks.

1.1 Related Literature

Industry evolution has drawn a lot of attention by researchers since late 1950s. At early stages,

Simon and his coauthors (Simon and Bonnini (1958), Ijiri and Simon (1964, 1977)) succeeded

in generating stochastic growth models providing a good approximation to the size distribution

of large U.S. manufacturing firms. However, these models lacked structural foundations. The

availability of detailed longitudinal panels since the 1980s accelerated the development of theo-

retical models based on optimizing agents and the analysis of the regularities in establishment

and industry evolution. Sutton (1997) presents a detailed summary of the findings of this early

literature.

Many recent studies seek to explain these regularities in a structural way. One of these

models is introduced by Klette and Kortum (2004). Their model is based on the quality-ladder

model of Grossman and Helpman (1991). Producers engage in innovation activity which results

in Poisson arrivals of quality improvements over the existing products. The new quality leader of

a product drives the incumbent producer out of the market and becomes the monopoly supplier.

Lentz and Mortensen (2008) introduce heterogeneity into the Klette and Kortum (2004) model

through different quality step choices of firms. This extension enables them to match several

moments of the data and perform structural aggregate productivity decomposition. Another

model that is related to Klette and Kortum (2004) is Luttmer (2008). In his model, innovations

come as new varieties and the number of varieties in the economy grows at the rate of the

population growth. He characterizes a balanced growth path for an economy where firms grow

by developing new blueprints from their goods. High skilled entrepreneurs can also develop

new blueprints from scratch and set up new firms.

This paper follows all three studies mentioned above. In the dynamics of establishment

evolution, it follows Klette and Kortum (2004). In the way the innovations arrive, it follows

4



Luttmer (2008). It is similar to Lentz and Mortensen (2008) in introducing heterogeneity into

the Klette and Kortum (2004) setup.

However the way heterogeneity introduced here follows from Melitz (2003). As in his model

establishments are born with different efficiency levels. Here, this heterogeneity generates

different innovation intensities across producers. Hence, I extend Melitz (2003) type static

monopolistic competition models into a dynamic framework where establishments’ sizes evolve

over time. Moreover, compared to Melitz (2003) model, a smaller amount of dispersion in

efficiency levels can generate a huge amount of size dispersion.

In the model, producers own multiple products. In a recent study, Bernard, Redding, and

Schott (2006a, b) provide empirical evidence on how multi-product producers dominate total

production in the U.S. economy. They also construct a static model of multi-product firms and

analyze their behavior during trade liberalization. They introduce two margins (intensive and

extensive) to expand size, and these margins are positively correlated with each other. However

what causes size differences across producers in their model is different than the one presented

here.

In another study, Klepper and Thompson (2007) construct a model that explains the subtle

relations between size, age, growth, and survival. In their model, there is no heterogeneity

across producers and their simple framework allows them to analytically characterize a wide

range of regularities on industry dynamics. An establishment is a collection of random sized

products and this randomness allows them to capture the independent relation between size,

age, and the hazard rate of exit.

Fitting the observed size distributions has been an important feature of recent industry

evolution models. Luttmer (2007) presents a model of firm and aggregate growth that is con-

sistent with the observed size distribution of U.S. firms. Firms grow as a result of idiosyncratic

productivity shocks, imitation by entrants, and selection. Using different mechanisms, both

Luttmer (2007) and this model successfully capture the thick right tail of the size distribution.

Luttmer (2007) also characterizes the balanced growth path of the economy while the focus

here is on a single industry. Both models differ in their explanations of the relation between

the variance of growth rates and size.

The model complements the work of Stanley et al (1996), Bottazzi (2001) and Sutton (2002,
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Table 1: Industry Details

Industry Code Before† After∗ Industry Name

311-312 3453 3244 Food Manufacturing and Food Products

321-322 1827 1735 Manufacturing of Textiles, Apparel except Footwear

331 1157 1092 Manufacturing of Wood and Cork Products except Furniture

341-342 710 646 Manufacturing of Paper, Paper Products, Printing, Publishing

381 1305 1212 Manufacturing of Fabricated Metal Products except Machinery
† Total number of observations in the original dataset. ∗ Number of observations used in the analysis
after the exclusion of observations due to missing variables and industry switches.

2007) on explaining the relation between the variance of growth rates and size. All these studies

propose simple statistical explanations to the observed relation in the data. Here, instead, I

present a structural model incorporating optimizing firms.

1.2 Dataset

In this study, I use data from Chilean Manufacturing Census (Encuesta Nacional Industrial

Anual, ENIA) which is provided by Chile’s National Statistics Institute (INE). The dataset is

an unbalanced panel of all establishments with 10 or more workers from 1979 to 1997. I use data

on eight biggest 3-digit industries which are described in Table 1. Data is at the establishment

level. In Chile, most of the firms had single establishments; hence the distinction between a firm

and an establishment is not very crucial. Hsieh and Parker (2007) note that in 1984 only 350

establishments were associated with multi-establishment firms4. In the original dataset there

were 8452 establishments and after excluding observations due to missing variables and industry

switches, I used 7929 establishments in the analysis. Roughly the same 3-digit industries used

here are analyzed in a study by Bergoeing, Hernando, Repetto (2005) who note that these

industries represent around 60% of total value added in the Manufacturing Census. Table 2

shows the number of establishments of different entry cohorts observed during the span of the

study.

4Moreover, Caves (1998) points out that most of the results on firm growth and turnover which form the

main discussion in this paper, have been insensitive to the distinction between establishment and firm.
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Table 2: Number of Establishments Observed at Different Years
Cohorts 1980 1985 1990 1995 1997

- 1980 3225 2061 1452 1251 800

1981-1985 501 268 209 111

1986-1990 769 528 277

1991-1995 827 347

2 The Model

Klette and Kortum (2004) propose a stylized model with a simple interpretation of establish-

ment and industry evolution. In Şeker (2006), I showed the quantitative strength of their

qualitative results on establishment dynamics on a dataset of Chilean manufacturers. Here, I

extend their work to be able to explain several other features of the data. To achieve this, I

construct a model which combines the static setup of Melitz (2003) with the dynamic setup of

Klette and Kortum (2004).

In the Klette and Kortum (2004) model, there is a fixed number of products and a producer

expands into new markets through quality improvements on the existing products. Here, the

producer grows by innovating new varieties.

This model focuses on solving the partial equilibrium for a single industry in steady state.

The partial equilibrium analysis simplifies the analytical solution and the computation of the

model and it is more appropriate to use since the focus is on a single industry rather than the

whole economy. In this industry, total labor supply is fixed.

2.1 Producer’s Problem

The industry consists of a large group of monopolistically competitive producers. Consumption

of the composite good  is determined by the CES production function given in equation 1

 =

µZ
∈ 

 ()
−1
 

¶ 
−1

 (1)

The measure of the set  represents the mass of available products each of which is indexed

by . As a result of the steady state solution which will be derived below,  is constant.

Consumers have a taste for variety and consume () units of variety  Goods are substitutes

with elasticity of substitution   1
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Producers are distinguished only by their efficiency levels, indexed by   0 with their

production functions given as  = . Producers with same efficiency-types will charge

the same price and make the same profit per product. However, the number of products

they produce may vary as the result of the stochastic innovation process. The static profit

maximization problem for any product market for a given wage rate ̄ yields a price () =

̄
(−1) and revenue

̄ () =

µ
 ()



¶1−
 (2)

where  =  is the aggregate expenditure of the composite good and  is the aggregate

price index. For an establishment with  products, aggregate profit is

̄

 () = ̄ () (3)

Here ̄ () is the profit per product given as

̄ () =

µ
̄

( − 1)

¶1−



−1
  (4)

The efficiency levels of producers grow at an exogenous rate  This rate is constant and

common across all producers. As will be shown below, without this assumption, an average

producer shrinks in size over time and the growth rate distribution cannot be fitted in the

estimation. Efficiency growth is the only source of growth in the aggregate economy. Hence

the aggregate expenditure  and the wage rate ̄ grow at this rate.

The number of varieties  determines the portfolio of the producer. This portfolio increases

by innovation of new products and it decreases by destruction of the current products. To

succeed in innovation, the producer invests in R&D. This investment determines the Poisson

arrival rate  of new innovations and it is formulated as  () = 0
1+1 for 0 1  0 This

strictly increasing and convex cost function reflects the labor input required for R&D. Klette

and Kortum (2004) provide motivation for incorporating the number of products in the R&D

cost5. In the mean time, the producer faces a Poisson hazard rate  of losing any product.

The hazard rate  is fixed and same for all establishments. Exit from the market occurs when

5Basically,  reflects the knowledge capital of the establishment which stands for the know-how and tech-

niques the producer has learned with its previous innovations.
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all products are destroyed. There is no reentering the market once exit takes place.

2.2 Value Function

The model can be solved using undetermined coefficients method. To have a simple analytical

solution to the producer’s value function, I will define  () =
̄()


and  = ̄


. In the

Appendix, I show how this assumption gives a stationary  ()   ()  and  for ∀ . I also
show how ̄ ()  and  grow at the same rate. Moreover, in the Appendix, I present a simple

formulation of how this industry of interest can be incorporated with the aggregate economy.

The state of the producer is determined by its number of products . The dynamic maxi-

mization problem of a particular  efficiency-type producer, for a constant interest rate 6 is

formulated in the following Bellman equation

() = max
≥0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
 ()− ()+

 [(+ 1)− ()]

+ [(− 1)− ()]

⎫⎪⎪⎪⎬⎪⎪⎪⎭  (5)

In this equation, the producer maximizes current profit net of R&D cost and its net future

value.

To derive the solution of the Bellman equation, I conjecture that the value function is given

as

() =

µ
 ()

 + 
+ ()

¶
 (6)

Here,  () is the continuation value of innovating. Substituting this value function into

equation 5, I get the following equation, with the details of the derivation given in the Appendix,

( + ) () = max
≥0

½


µ
 ()

 + 
+ ()

¶
−  ()

¾
 (7)

Using this equation, I will find the value of  () and solve the stationary industry equilibrium.

Before doing that, let’s define the problem of the entrants.

6Constancy of  is shown in the Appendix.
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2.3 New Entrants

Entry requires an innovation. Establishments discover their efficiency types when they enter

the market. All entrants start with a single product but they don’t necessarily have the same

startup size because of their differing efficiency levels. More efficient establishments have larger

product sizes which can be seen in equation 2. The potential entrants innovate at rate  They

also face the same innovation cost function as the incumbents7. The free entry condition given

below determines the entry rate in the industry

0 ()| {z }
marginal cost of innovation

=

Z
 () | {z }

net gain from innovation

 (8)

Here  is the value of a single product for a  efficiency-type producer, and  () is the

efficiency-type distribution of entrants. Entry rate  is determined by the multiplication of 

and the constant measure of potential entrants .

2.4 Stationary Industry Equilibrium

Recall that the interest rate  wage  and the hazard rate of exit  are constant. A stationary

equilibrium for this industry consists of innovation rate  ()  for all efficiency-types and the

entry rate  such that for any given  and : () any  efficiency-type incumbent producer

solves equation 7 to maximize its value, () potential entrants solve equation 8 and break even

in expectation.

Lentz and Mortensen (2005) provide a proof for the existence of equilibrium for a model

closely related to mine. To guarantee the existence, I need that    () for ∀  Otherwise
size and age of some establishments diverge to infinity which precludes having a stationary size

distribution8. The first order condition for equation 7 is

 :
 ()

 + 
+ () = 0() (9)

The value of  () is derived from equation 7 as follows

7This is a simplifying assumption and the same structure for the innovation cost of entrants is used in Lentz

and Mortensen (2008).
8The condition needed to guarantee    () for ∀  is 0 ()  −()



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 () = max
 ≥ 0

(
()

+
−  ()

 + − 

)
 (10)

Implementing the value of  () into equation 9 and after some algebra, I get

0 () =
 ()−  ()

 + − 
 (11)

The right hand side of equation 11 is equal to the value of a single product  Klette and

Kortum (2004) show that  increases in  In equation 4,  is increasing in  Hence, more

efficient producers are more innovative. From equation 2, we know that they also generate more

revenue from each product they produce. This complementarity between innovation rates and

product sizes increase the size differences between low and high efficiency-type producers which

consequently stretches out the right tail of the size distribution. It also implies that a smaller

dispersion in efficiency levels (in models like Hopenhayn (1992) or Melitz (2003)) is required

to explain the observed size dispersion. This property of the model is the main reason for

obtaining the qualitative and quantitative success of the model.

Next, I describe the equilibrium condition for product creation. Although establishments

take the destruction rate  as given, its value is determined in equilibrium. Since the model

is in steady state, total creation of products is equal to total destruction. Define  () as

the mass of −type establishments with  products,  () =
∞P
=1

 () as the total mass

of −type establishments, and  as the mass of all establishments in the industry at steady

state9. Based on these, I can define  () =
()


as the steady state type distribution and

Λ () =
∞P
=1

 () as the total mass of products owned by −type establishments. Then the
relation between total creation and destruction can be written as

 =  +

Z
 ()∆ ()  () 

where the first part in the right hand side of this equation is the creation from entry and the

second part is the creation by incumbent firms. In equilibrium, total mass of products produced

by entrants and incumbents is equal to mass of products available in the industry 

9Derivation of the formulas for steady state size distribution is given in Klette and Kortum (2004).
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2.5 Dynamics of Size Evolution

After solving the model for the optimal innovation rate, the evolution of an individual producer

conditional on its efficiency-type can be characterized. For ease of notation, let  denote the

innovation rate  () for a particular −type producer At any moment, the number of products
an establishment produces can stay the same, increase by one unit as a result of an innovation,

or decrease by one unit due to the exogenous destruction rate. Denote  (;0|) as the
probability that an establishment has  products at time  conditional on having 0 products

at time 0 and being type  This probability changes over time at rate ̇ (;0|)  The following
system of equations describe the evolution of an individual −type producer10,

̇ (;0|) = (− 1)−1 (;0|) + (+ 1)+1 (;0|)−  (+ )  (;0|) for ∀ ≥ 1
̇0 (;0|) = 1 (;0|)  (12)

The solution to this set of coupled difference-differential equations yields a geometric distribu-

tion for establishment size at time  conditional on survival

 (; 1|)
1− 0 (; 1|) = (1−  (|)) (|)−1   ≥ 1 (13)

where  (|) =



0 (; 1|) =


¡
1− −(−)

¢
− −(−)

where  (|) is the parameter of the size distribution. The solution of this system can be

used to derive the moments of the growth rate of the number of products an establishment

owns. The expected growth rate and the variance of growth rate of the number of products

conditional on initial size 0 are given as

 [ () |0 = 0] = −(−) − 1 (14)

 [ () |0 = 0] =
+ 

0 (− )
−(−)

¡
1− −(−)

¢
 (15)

10A formal solution of this system of equations is given in Appendix C of Klette and Kortum (2004).
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The expected growth rate of total size relative to aggregate expenditure can also be determined.

Size of a −type establishment is given as

 () =

µ
 ()



¶1−
 ()  (16)

 () grows due to the growth of the number of products.

3 Model’s Implications

The model has four novel implications, each of which explains a regularity observed in Chilean

dataset and several other empirical studies on industry evolution. Below, I describe three of

these regularities, present evidence from Chilean dataset on each one, and show how the model

explains them. The fourth regularity, which is the long right tail of the size distribution, is

explained in the simulation results section.

3.1 Effects of Size and Age on the Hazard Rate of Exit

Size and age are two important observable characteristics of establishments that have been

extensively used to analyze their dynamics. Many studies have shown that the hazard rate of

exit decreases as size and age increase11. Figure 1 shows the relation for the Chilean dataset

including all industries. Each line represents a size cohort where size is measured as total sales.

As both size and age increase, the hazard rate of exit decreases. The establishments in the

smallest size cohort face higher exit rates than the other cohorts and the decline in hazard

rate as age increases is slower in this size cohort. This is probably due to the small number

of observations in the older ages for that size cohort. For the other cohorts, decrease in the

hazard rate of exit is more pronounced.

The Klette and Kortum (2004) model can explain the relation between the hazard rate of

exit and size. It also generates the negative relation between age and the hazard rate of exit but

only because age is a proxy for size. Conditional on size, age has no effect on the hazard rate

of exit. Introducing random sized products, Klepper and Thompson (2007) can explain both

11Caves (1998) reviews the empirical literature on these relations.
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Figure 1: Hazard Rate of Exit Conditional on Size and Age (Data)
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relations independently. In my model, the relation holds for a different reason. Establishments

with different efficiency levels produce different numbers of products. Given size, there is a

mixture of producers with different number of products and the older ones are more likely to

have more products, hence are less likely to exit. Without the efficiency-type heterogeneity, all

producers would have the same number of products at a given size and thus would face the

same hazard rate of exit no matter how old they are.

I can derive an analytical formula that shows these relations. To construct this formula,

at any age , I need to know the hazard rate of exit, the number of products owned by the

producer, and the efficiency-type distribution of producers. Using the solution of the system

of equations for size evolution given in equation 12, having entered at size one, probability of

exiting within one unit of time is given as

0 (1; 1|) =

¡
1− −(−)

¢
− −(−)

(17)

From equation 13, the probability of having  ≥ 1 products at age  is (1−  (|)) (|)−1 
A −type producer at size  has  () =k 

(  )
1− k products. Age-conditional efficiency-type

distribution with density  () can be derived using the type distribution at entry  (·) and
the probability of surviving more than  years 1− 0 (; 1|)  which is given as

 () =
 () (1− 0 (; 1|))R
 () (1− 0 (; 1|))  for ∀  ≥ 1 (18)
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Using equations 17 and 18, the hazard rate of exit conditional on age  and size   ( )

can be derived as follows

 ( ) =

Z
0 (1; 1|)()

h
(1−  (|)) (|)()−1

i
 ()  (19)

I plotted the graph of ( ) for different size  and age  values in Figure 212. For comparison,

I also plotted the lines implied by the Klette and Kortum (2004) model which are labeled as

"KK". Each plotted line shows the hazard rate for a different size level. For the Klette and

Kortum (2004) model, I just showed two size levels 200 and 800. In their model, at any

particular size, the hazard rate is independent of age but the hazard rate decreases as size

increases. On the other hand, in my model both relations hold independently. Conditional on

age, the hazard rate of exit decreases in size and respectively conditional on size, it decreases

in age.

Figure 2: Hazard Rate of Exit Conditional on Size and Age (Model)

0 2 4 6 8 10 12 14 16
0.005

0.01

0.015

0.02

0.025

Age

H
az

ar
d 

R
at

e

 

 200

400

800

1600

200 (KK)

800 (KK)

The analytical framework of the model allows me to prove the existence of these relations.

In order to do that, first I present two lemmas which are used for the proof of the proposition.

Lemma 1 For all   0, (− )  (−)−1


and (−)−1


is strictly increasing in .

Proof. See Appendix.

12The parameter values used for the graph are from the simulation results of Food industry which will be

explained in the empirical analysis part.
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Lemma 2 For all   0 the parameter of the size distribution  () increases in inno-

vation intensity  (i.e.
()


 0).

Proof. See Appendix.

Proposition 1 Hazard rate of exit  ( ) decreases in age conditional on size and

decreases in size conditional on age for all ages   0 and sizes   0.

Proof. See Appendix.

The underlying reason for getting the independent relation between the hazard rate of exit

and age is the heterogeneity in efficiency levels. Although more efficient establishments survive

longer and grow faster, it’s possible for a less efficient producer to get lucky and accumulate

many products. This in return decreases the hazard rate of exit relative to a higher efficiency

producer with only few products. Since it takes time to accumulate many products, that

establishment will be older than the more efficient producer with a few products. Hence at

any given size, it is possible to observe establishments with differing number of products and

differing hazard rates of exit.

3.2 Effect of Size on the Variance of Growth Rates

In the literature on establishment and industry evolution, there are many studies that have

analyzed the relation between size and the expected growth rate. However, only recently have

there been studies that try to explain the dispersion in growth rates and how it changes with

size. Stanley et al (1996), Bottazzi (2001), Sutton (2002, 2007) show that the variance of growth

rates decreases as size increases13. The common feature of all these studies is the introduction

of a statistical model to explain the relation observed in the data rather than using a structural

model based on optimizing firm behavior. Three recent studies by Klette and Kortum (2004),

Luttmer (2008) and Klepper and Thompson (2007) analyze this relation in a more structural

setup. Although all three models qualitatively explain the negative relation, the slope of the

relation implied by these models is too steep compared to the data.

Figure 3 shows the relation between the log of the standard deviation of growth rates and

the log of size observed in all data combined and in all five industries individually. Size is

13Sutton (2002) shows that the slope of the fitted line between log of standard deviation of growth rates and

log of size measured in sales varies between -0.15 and -0.21. Stanley et al (1996) performs the same analysis

using employment as size and finds the slope as -0.16.
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measured as total sales. Slopes of the fitted lines for each industry vary between -0.15 and

-0.32. For the very small and very large size bins, deviations exist from a linear relation which

is probably caused by the small number of observations in these bins. The relation observed for

the specific industries is not different than the relation observed when all industries are merged.

This fact suggests that the nature of this relation is due to some fundamental property of the

economic dynamics and establishment behavior, which makes it appealing to identify.

Figure 3: Standard Deviation of % Growth Rates (All Industries)

0
.1

1
1

0
S

ta
n

d
a

rd
 D

e
vi

at
io

n

100 1000 10000 100000
Size

All Food Textile Wood Paper Metal

Since the growth rate of efficiency is constant, the variance of growth rate of size is de-

termined by the variation in the growth rate of the number of products. Emergence of the

negative relation in the model is explained as follows. The evolution of an establishment is

determined by combining the evolution of each of its products. Hence, the aggregate growth of

an establishment is the average of the growth of these independent components. This leads to

an inverse relation between the variance of the growth rates and initial size.

To make the analysis comparable to the empirical studies, I will look at the relation between

the standard deviation of the growth rates and size. If all the producers had the same innovation

rate, as in Klette and Kortum (2004), this inverse relation would give a slope of -0.5. Figure

4 shows the relation for several innovation rate values. As the innovation rate increases larger

establishments can exist in the market and the line shifts to the right. In my model, since

producers differ in their efficiency levels, they have different innovation rates. Hence, the

relation that emerges here is a mixture of the lines in Figure 4. Furthermore, since high-

efficiency producers attain larger product sizes, they get even larger and this causes the line to
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extend even further to the right. This property plays an important role in generating a flatter

relation in the model.

Figure 4: Standard Deviation of % Growth Rates vs Size (Different Innovation Rates)
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In the model, as a result of the mixing, a high-efficiency producer with a single product can

be in the same size bin with a low-efficient producer that luckily survived and gained many

small products. The inefficient producer will exhibit lower variance in growth rate since it has

many products. But the existence of high-efficient producer exhibiting high variance due to

its single product will increase the total variance in that size bin. As a result, the mixing of

producers with different efficiency levels generates a flatter relation between the variance of the

growth rates and size.

I derive the formula for the variance of growth rates as follows. Suppose that there are 

different efficiency types in the industry denoted as {}=1for  ∈ Z+. For each type, define
the variance of growth rates conditional on initial size  as 

³
 () |̃ = 

´
 Total variation

can be written as


³
|̃ = 

´
=

X
=1


³
|̃ = 

´h

³
 () |̃ = 

´
+
¡
[()]− ̄

¢2i
(20)

where 
³
|̃ = 

´
is the probability of being −type conditional on having initial size 

[()] is the expected growth rate for the −type producer, and ̄ is the expectation taken
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over all  types. Recall that formula for 
³
 () |̃ = 

´
where  is the number of products

was given in equation 15. Since each product size is fixed, it is straight forward to show that


³
 () |̃ = 

´
is equal to 

³
 () |̃ = 

´
for all efficiency-types.

The formula derived in equation 20 provides insight about the determinants of establishment

evolution. It allows us to decompose the contribution of the exogenous efficiency differences and

the endogenous innovation performance of establishments on their growth patterns at different

size levels. In equation 20,   =

X
=1


³
|̃ = 

´

³
 () |̃ = 

´
shows the within

type variation in growth rates and   =

X
=1


³
|̃ = 

´ ¡
[()]− ̄

¢2
shows the

between type variation. This decomposition is plotted in 5. At small size levels, most of the

variation in evolution is caused by the endogeneous innovation process. Small establishments

are likely to have few products, hence the changes in the number of products dominate the

effects of having different efficiency levels. in the evolution process. At larger size levels,

establishments are likely to have many products hence the variation caused by endogenous

innovation decreases as described in Figure 4. At this stage, differences in the exogeneous

efficiency differences start to dominate the variation in growth rates.

Figure 5: Decomposition of Variance of Firm Growth at Steady State
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Next, I look at the model’s fit to the negative relation between size and standard deviation
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of growth rate. In the estimation part that will be discussed below, this relation was not

targeted to match in the data. However the relation implied by the model improves the Klette

and Kortum (2004) result which is shown in Figure 6. The graph on the left shows the data

for the food industry and the fitted line which has a slope of -0.23. The graph on the right

shows the simulated data and the fitted line to it with slope -0.33. The line labeled as "KK

Model" shows the Klette and Kortum (2004) result with slope -0.5. The model clearly improves

Klette and Kortum (2004) results. However the standard deviation of growth rates for small

establishments is much larger in the data than in the value obtained from the model.

Figure 6: Standard Deviation of % Growth Rates for Food Industry: Data vs Model
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3.3 Life Cycle of a Birth Cohort

There are various factors that affect the post-entry performance of establishments such as the

amount of sunk costs, as argued by Dixit (1989) and Hopenhayn (1992), and the innovative

environment of the industry, as observed by Geroski (1995). Empirical evidence on these

hypotheses has been provided by Audretsch (1991, 1995) and Baldwin (1995). On the other

hand, Audretsch (1995) summarize other studies which argue that characteristics specific to

establishments also influence their post-entry performances. Since size is the most important

observable characteristic specific to an establishment, its value at the startup could be signaling

important information about the evolution process. To show how important the startup size

is, in Figure 7, I plot the size evolution of establishments grouped with respect to the age at

20



which they exit. The graph combines all industries and all birth cohorts from 1980 to 1997. A

similar but noisier picture emerges when Figure 7 is drawn for single industries or for specific

birth cohorts due to small number of observations. To get a nicer picture of the relation, I

combined all birth cohorts in all industries.

Figure 7: Pre-Exit Behavior of Establishments (Data)
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The graph shows that the establishments that will survive longer are larger in terms of sales

than the exiting establishments within the same birth cohort at all ages including the startup.

It also shows the shadow of death effect; establishments which will exit in the future start to

shrink in size several years before their exit.

The model captures these two features of the data, as shown in Figure 814. In the model,

heterogeneity in size at the startup occurs by the variation in efficiency levels. The model

captures the shadow of death effect especially for the 3-6 and 6-9 year cohorts, but in the data

this effect is more pronounced. In Klette and Kortum (2004), all producers start with one

product; hence, there is no dispersion in size at startup. Lentz and Mortensen (2008) introduce

randomness in size of each product and heterogeneity. However, there is no relation between

the startup size and the post-entry performance. In the proposition below, I show how the

model explains this relation.

Proposition 2 Consider a cohort of establishments all entering at the same time. At

any age  ≥ 1 within this cohort, establishments that survive longer are larger in size than the

14I estimate my model for the chosen 3-digit industries individually. This graph shows the model’s result

for Food industry not the all industries combined because I intend to show how model explains this relation

qualitatively.
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exiting establishments (i.e. for  representing the establishment size,  representing the time

of the exit, ∆  0 0 ≤     [ () | = ] ≤  [ () | = +∆]).

Proof. See Appendix.

Figure 8: Pre-Exit Behavior of Establishments (Simulation)
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The positive relation between the startup size and the likelihood of survival is not unique

to Chilean Data. Audretsch (1995) performs a logit estimation using US establishments and

concludes that startup size has an impact on the likelihood of survival. Similar results are

found in Dunne, Roberts, and Samuelson (1989). This evidence shows that it’s an important

feature that needs to be understood in order to explain causes of size dispersion, heterogeneous

responses of producers to exogenous shocks, and responses to policy changes. The model has

the potential to explain these issues.

4 Empirical Analysis of Industry Evolution

In this section, I estimate the model separately for five 3-digit industries in the Chilean Man-

ufacturing sector. I analyze whether the dispersion observed in establishment behavior in the

aggregate manufacturing sector also holds at the 3-digit industries. All the values of sales and

wages are given in thousands of 1986 real Chilean peso. The nominal values are deflated by

the aggregate GDP deflator from World Bank Development Indicators database.
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4.1 Industry Comparison

Five industries that will be analyzed, their 3-digit SIC codes, and the total numbers of estab-

lishments observed were given in Table 1. Doing the same estimation exercise five times aims

to capture the flexibility of the model in explaining different industry structures.

In the Appendix, I show the data analysis on the shape of the size distributions, on turnover,

and on growth rates across industries. The size distribution of each industry is estimated non-

parametrically (using Kernel regressions) (see Figure 11). The shapes of these distributions

change very little over time. Food and Paper industries differ from the other three industries in

several ways with the most outstanding difference being on the shape of the size distribution.

The average sales and the variation of sales are larger and the coefficient of skewness of the

log size distributions is higher in these two industries (see Figure 12). The ranking of the

industries is preserved for the variation in size when I analyze the industry data with respect

to their means (see Figure 12). This implies that the differences in size distributions are not

purely caused by economies of scale but are due to some intrinsic differences across industries.

Further industry analysis shows that Food and Paper industries have lower turnover rates

(see Figure 12). Capital intensities vary across industries but do not explain the differences

in the shape of the size distribution. Using establishment data for the U.S. economy, Rossi-

Hansberg and Wright (2007) show that the larger the capital intensity in a sector, the thinner

is the right tail of the size distribution. They define sectors at 2-digit SIC level. The industries

analyzed here are more narrowly defined and at this level the relation suggested by their

model does not hold. I looked at the average capital intensities of establishments that were

in the market in 1979 and that entered in 198015. I found the capital-output ratio of every

establishment and then plotted the average ratio for every industry (see Figure 13). The Paper

industry, which is the most capital intensive, has the thickest right tail. The other industry

with a thick right tail is the Food industry and its capital intensity is among the lowest. Hence

capital intensity does not play a distinguishing role in explaining the differences in the shape

of size distributions for narrowly defined Chilean industries.

15Capital data was only available for these establishments in the dataset.
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4.2 Estimation

The model introduced above is estimated using simulated method of moments. With this

method, I try to find the values of the model parameters that bring the vector of moments

from the simulated data closest to those from the data.

4.2.1 Data Moments

Eight moments are chosen for parameter estimation. They are prominent in explaining the

industry structure and they also reflect the cross-industry differences. As one of the targets of

this paper is fitting the industry size distribution, 10, 25, 50, 75 and 99 percentiles are chosen.

The shape of the size distribution is affected by the exogenous destruction rate of products,

aggregate expenditure, efficiency type distribution, and innovation cost parameters. Another

moment is the entry rate which plays an important role in identification of the destruction

rate. Two other moments, the mean and the variance of establishment growth rates, are

closely affected by the innovation cost parameters, destruction rate, and the efficiency type

distribution.

The values of these moments for Food and Food Products industry (SIC 311-312) are given

in Table 3. Following Horowitz (2001), the standard errors of the moments are estimated

by 1000 bootstrap repetitions which are given in parentheses. Since the model incorporates

growth in average establishment size, only year 1979 is used to estimate the moments for the

size distribution. The rest of the moments are constructed by averaging over the 1979 -1997

period16. The annual values of these moments didn’t show a strong trend over time which is

in accordance with the steady state assumption of the model. The growth rate distribution is

found as the annual increase in sales and it includes the exiting establishments (i.e. -1 is placed

in the year that the establishment exits). Moment vectors for the other industries are given in

the Appendix.

The parameter vector to be identified is  =
©
  0 1   ̄ 

ª
which are described

in Table 4. Since there are just eight moments identifying eight parameters, the system is just

identified. Efficiency types are lognormally distributed (˜
¡
 

¢
) with ̄ representing

the minimum efficiency level.

16Chile went through a financial crisis in 1982-1983. I excluded these years from finding the average values

of the moments.
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Table 3: Data Moments for Food Industry

Moment Definition Value∗

pctile(10) 10 Percentile 128.80 (4.72)

pctile(25) 25 Percentile 207.43 (4.85)

pctile(50) 50 Percentile 346.15 (10.58)

pctile(75) 75 Percentile 894.56 (72.30)

pctile(99) 99 Percentile 31291.11 (2846.05)

E[g] Average Growth Rate 0.027 (0.0057)

Std[g] Std Dev of Growth Rate 0.75 (0.047)

 Entry Rate 0.054 (0.0018)
∗Values in the parentheses show the standard errors.

Other than these industry specific moments, the real interest rate  is fixed at 5% In the

dataset, I had information on the average wage rates and the numbers of blue and white collar

workers. Using that information, I found the average annual wage rate for each industry in

thousands of real 1986 Chilean peso. Real wages for the industries are: 3068 for Food, 303 for

Textile, 271 for Wood, 489 for Paper, and 371 for Metal industries. Since aggregate expenditure

growth in an industry is equal to exogenous efficiency growth rate , this parameter is directly

estimated from the data with values of 78% for Food, 55% for Textile, 12% for Wood, 11%

for Paper, and 95% for Metal industries.

Table 4: Model Parameters
0 1 Innovation cost

 Destruction rate

  Efficiency distribution

̄ Minimum efficiency level

 Elasticity of substitution

 Aggregate Expenditure

4.2.2 Simulation Method and Algorithm

The data is comprised of sales for all producers. Denote this panel by ∆ =
n
{}




=1

o1997
=1979

where  refers to the producer,  refers to the year, and 
 is the number of observations

in the data at time . Using the panel, I calculated the vector of data moments denoted as

̂ (∆). Then, given a vector of parameters  I simulated a panel of sales ∆ =
©
 


ª

=1
for
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 = 10 000 establishments and repeated the simulation for  = 10 times. Using the simulated

panel, I found the moment values and averaged them over the simulation size giving ̂

() as

follows:

̂

() =

1



X
=1

̂ (∆ ()) 

Finally, the estimator ̂ is found as the solution to the following criterion function,

̂ = argmin


³
̂

()− ̂ (∆)

´0

³
̂

()− ̂ (∆)

´
where  is the identity matrix. Since the system is exactly identified, identity matrix is used as

the weighting matrix which gives the equally weighted minimum distance (EWMD) estimator.

Standard errors of the estimator are estimated by bootstrap method. Given the data ∆ a

bootstrap sample ∆ is drawn with replacement. The draws are made block over time. This

means that if a particular establishment is selected, the entire time series for this establishment

is included in the constructed sample. Then for each drawn sample17, the estimator vector ̂


is found by solving

̂

= argmin



³
̂
 ¡

¢− ̂

¡
∆
¢´0


³
̂
 ¡

¢− ̂

¡
∆
¢´



The model is highly nonlinear. Hence, down-hill simplex method (amoeba) is used for

optimization. The steps to compute the industry equilibrium are given as follows:

1. The parameter vector is initialized and the vertices of the simplex are determined.

2. For each parameter vector, an upper bound of the efficiency type distribution satisfying

 ()   for ∀ is determined.

3. Given the bounds of the efficiency type distribution and the parameter vector, an aggre-

gate price index  is found.

4. For 10,000 establishments, the value function is solved and innovation intensities are

obtained.

5. Using these values, establishment and industry related moment values are determined.

17For this exercise 50 bootstrap repetition is used.
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6. The value of the criterion function is checked and using the amoeba routine, the simplex

of parameter vectors is updated.

7. The system is iterated until either the value of the criterion function or the parameter

vector converged.

4.2.3 Simulation Results

The estimated parameter vectors for each industry analyzed are given in Table 5. The standard

errors18 are given in parentheses. Simulation results show that the parameter values for Food

and Paper industries differ from the other industries. These two industries have lower innovation

costs which allow them to have more innovative producers. Combined with the higher efficiency

levels, this contributes to the existence of larger producers. Lower destruction rate explains the

smaller turnover rates. The stochastic innovation process together with the higher variation

in efficiency levels explains the greater dispersion in size for these industries. It is also seen

that part of the differences in the size distribution is attributed to the differences in aggregate

expenditures. On the other hand, the variation in the elasticity of substitution and the minimum

efficiency level parameters are relatively small across industries.

Estimation results for each industry are given in the Appendix. Figure 9 shows the observed

and simulated size distributions for Food industry. I also plot the logarithmic size distribution

implied by the Klette and Kortum (2004) model and the Pareto distribution. As the graph

shows, the model captures the fat right tail quite well. Logarithmic distribution cannot generate

enough variation in size and cannot generate very large sized establishments. The Pareto

distribution which was used by Luttmer (2007) to fit the size distribution of the U.S firms,

can generate large sizes19. But it cannot fit the data at medium-sized classes. Graphs for

other industries with the simulation results are given in the Appendix. Although the model

performs well in capturing the shape of the size distributions, it cannot generate very small

sized producers (i.e. with total sales less than 100).

In the model, innovation is done by the incumbent producers. When innovation cost is

low, these producers get more innovative and there is less room for entry. Hence larger indus-

18I found the standard errors for only two of the industries (Food and Wood).
19Pareto distribution used here has coefficient 0.7 which corresponds to a straight line with slope -0.7.
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Table 5: Parameter Estimates for All Industries
Food Paper Textile Wood Metal

 2.19 2.37 2.6 2.4 2.3

(0.44) (1.09) (0.46) (0.69) (0.48)

c0 47085.71 44713.4 71896.1 71999.6 74367.9

(1569) (1846.9) (1514.8) (6081) (3214.2)

c1 3.95 3.82 5.45 5.73 5.32

(0.02) (0.4) (0.06) (0.11) (0.25)

 0.125 0.13 0.184 0.18 0.176

(0.002) (0.01) (0.002) (0.01) (0.01)

 2.03 1.82 0.87 1.55 0.88

(0.17) (0.22) (0.22) (0.33) (0.42)

 4.59 4.25 1.77 1.11 1.43

(0.36) (1.05) (0.17) (0.39) (0.27)

̄ 1.19 1.21 2 1.43 1.62

(0.04) (0.17) (0.07) (0.17) (0.14)

 1293.2 2239.3 931.7 517.6 827

(46) (100.4) (73.1) (47.6) (74)

The values in the parentheses show the standard errors.

tries have lower turnover rates as observed in the data. The model performs relatively well

in capturing the entry rates across industries. However, it underestimates the growth rate

distribution.

5 What Causes Size Dispersion?

In this section, I elaborate on a novel feature of the model. The model incorporates two

forces that generate persistent differences in establishments’ performances. In his review of

models on establishment evolution, Sutton (1997) lists these forces as: () intrinsic efficiency

differences that are determined before entering the economy () differences that are generated

through idiosyncratic innovations that accumulate through the life of the establishment. Both

views have drawn great attention in the literature20. Among the first group of models, Lucas

(1978) and Jovanovic (1982) link the differences in efficiencies to the differences in the skills

of entrepreneurs. In the second group of models, performance is driven by producer specific

learning, R&D, and innovation. Some recent models that follow this view are Ericson and

Pakes (1995), Klepper (1996), Klette and Kortum (2004), and Klepper and Thompson (2007).

20For a review and comparison of both types of models see Klette and Raknerud (2002).
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Figure 9: Size Distribution for Food Industry
 

1
0

.1
0

.0
0

1
0

.0
0

01
P

r(
si

ze
>

S
)

1 100 1000 10000 100000
Size

Simulation Data
Pareto(-0.7) Logarithmic (0.95)

The model introduced here distinguishes the contributions of exogenous idiosyncratic effi-

ciency differences and accumulated innovations to explain size dispersion. It generates disper-

sion in the startup sizes due to efficiency differences. As establishments grow old, the innovation

process induces dispersion among producers of the same efficiency-type. As a result, both fac-

tors contribute to the total variation of size.

To see how the contribution of each part evolves over time, I analyze the life-cycle of pro-

ducers within a birth cohort. First, I look at the variation at birth (age=0). All establishments

start with a single product. Hence, within type variation,  0 is zero. Total variation in

size only reflects dispersion between efficiency types, which is given as

 0 =

Z
( ()−)

2
 ()  (21)

where  () is sales per product for a −type producer,  = R  () ()  is the expected
size at the entry, and  () is the probability density at the entry.

As the establishments in the same birth cohort grow older, as a result of the stochastic

innovation process, dispersion will emerge among the establishments of the same efficiency

type. Let  be the number of products owned by a −type producer. At age   can be
determined as a random draw from the geometric distribution with parameter  (|)  This
distribution has mean 1

1−(|) and variance
(|)

(1−(|))2  Conditional on type, the expected size
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and the variance of size at age  are given as

 [ ()| ] =  ()
1

1−  (|) (22)

 [ ()| ] =  ()
2  (|)
(1−  (|))2  (23)

Total size is ̄ =
R
 [ ()| ] ()  where  () is the efficiency type distribution of

firms at age . Using equations 22 and 23, total variation in size at age  is determined as

  =

Z
  [ ()| ] () | {z }

 


+

Z ¡
 [ ()| ]− ̄

¢2
 () | {z }

 


 (24)

Using the parameters estimated for the food industry, total variation in size is plotted

in Figure 10. The graph shows that, as the establishments get older, the share of within

type dispersion increases. It increases monotonically and exceeds the between type dispersion

after 4.5 years. At the end of 50 years of survival, within type variation accounts for 66%

of the total variation in size. Since producers with low efficiency don’t live as long, between

type heterogeneity decreases at older ages. Hence more of the total variation is explained by

within type dispersion. This analysis shows that both the intrinsic efficiency differences and

the accumulated innovations contribute to explain the variation in size, but their contributions

change as establishments grow old.

The model also allows us to derive the formula for total variation in size at steady state.

Size distribution for each −type firms at steady state has a logarithmic distribution with
parameters  () =  () 21 The formula for variance of logarithmic distribution for −type
firm is given as

  (|) = −  + ln (1− )

(1− )
2
ln2 (1− )



Then, total variation in size at steady state can be written as

  =

Z
  [ ()|]  () | {z }

 


+

Z ¡
 [ ()| ]− ̄

¢2
 () | {z }

 




21This relation is derived in Klette and Kortum (2004).
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Figure 10: Total Variation in Size over Time

0 5 10 15 20 25 30 35 40 45 50
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

P
er

ce
nt

 o
f T

ot
al

 V
ar

ia
nc

e

Age

 

 
Within
Between

where  refers to the total size level at steady state and  () was defined before as the steady

state efficiency type distribution.

Using the parameter values obtained from the simulation of food industry, I calculate the

value of total variance in size at steady state and its decomposition. Standard deviation of the

size distribution was one of the moments matched in the estimation. The decomposition shows

that, 80 percent of the variation in size is due to within type variation and the rest 20 percent

is due to between type variation. The estimated parameters of the efficiency type distribution

showed that this distribution is highly skewed. As a result, a large mass of establishments have

similar efficiency types. Hence, variation in size caused by the endogenous innovation process

dominates the variation caused by differences in efficiency levels. I performed the same exercise

for the four other industries included in this study and the percentage values of total variation

were similar to food industry.

6 General Equilibrium and Counterfactual Experiments

A distinguishing feature of Klette and Kortum (2004) model from the earlier work in endoge-

nous growth models is the research done by the incumbent establishments. In the models of
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Grossman and Helpman (1991) and Aghion and Howitt (1992), innovations are done only by

new establishments and it is hard to reconcile this property with the persistence of large estab-

lishments in industries22. With this feature of the model, I demonstrate the effects of two policy

changes on the establishments’ innovation capacities. Before performing these counterfactual

experiments, I present stationary general equilibrium of the economy. Because, the potential

feedback effects of aggregate price and wage rates are not considered in partial equilibrium

analysis which are important to consider making policy analysis. Stationary equilibrium is

the values of wage , interest rate , and aggregate destruction rate  that satisfies the fol-

lowing conditions: ) incumbent firms maximize their value by optimally choosing  solving

equation 11 ) potential entrants break even in expectation by optimally choosing  solving

equation 8 ) representative consumer maximizes utility subject to budget constraint, ) ag-

gregate creation is equal to aggregate destruction of products through  = +
R
Λ () () 

where Λ () is the mass of products produced by −type firms, ) labor market clears through
 =

R
 ()Λ ()  +  () where  () =  () +  ( ()) is total production of a

−type incumbent firm for a product which is composed of production employment  () and
R&D employment  ( ()). Finally  () is total employment for new entrants.

In solving the stationary equilibrium, I normalize aggregate expenditure to a constant which

is the value estimated for food industry. For the other parameters of the model, I also use

the values estimated for food industry. In the counterfactual experiments, I normalize the

potential pool of entrants  to one which was a free parameter in the estimation. In the

first experiment, I introduce a 30% subsidy on R&D investment. R&D investments are usually

seen as investments that have social returns exceeding their private returns. Hence, in many

countries we see policymakers subsidizing R&D in order to balance the social and private

returns of these investments. The implications of an R&D subsidy policy on establishment

and industry evolution are substantial. In the second experiment, I increase product market

competition. Previous studies have found mixed results about the relation between product

market competition and innovation. In studies like Dasgupta and Stiglitz (1980), Spence (1984)

more competition reduces innovation effort. On the other hand, Shaked and Sutton (1987) and

Motta (1993) concluded that more competition increases innovation effort. Empirical results

22See Klette and Griliches (2000) for further discussion of this difference between the previous literature

and the new studies.
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are also not conclusive in this matter (see Nickell (1996), Blundell et al(1999)). To see how

innovation is affected from higher competition I decrease the price-cost margin by 10%. In the

model, for each product, establishments charge the same markup. Hence price-cost margin is

equal to 
−1 and it is constant. 10% decrease in the price-cost margin can be generated by a

15% increase in the elasticity of substitution.

For the experiments, I draw 50,000 efficiency levels and keep these values constant in an-

alyzing the effects of the policy changes. Then, I look at the changes in aggregate innovation

by incumbent firms, entry rate, equilibrium wage rate, average sales, and growth rates. The

model also allows me to analyze the effects of the policy changes on firms with different effi-

ciency levels. In order to do this, I divide establishments into four groups according to their

efficiency levels. Then I compare average sales, research intensity, and product growth for each

group both before and after the change. The results of these counterfactual experiments are

given in Table 6. Table shows the percentage changes in the selected variables after the policy

change.

In most of the existing models of creative destruction, since the innovation is done by

the outside firms, subsidies encourage entrants to do more research. In this model, subsidies

also encourage incumbent establishments to do more research. In the first experiment, 30%

subsidy on R&D investment increases innovation by incumbent establishments and by entrants.

Aggregate innovation by incumbents in the Table 6 increases by 8.4%. In the model, entry

requires a successful innovation and the subsidy decreases cost of innovation. As a result entry

increases by 7%. The increased creation rate leads to 1% faster increase in sales growth. The

subsidy has negative effects on revenues. Lower cost of R&D reallocates employment from

production to R&D which increases wage but decreases revenues in return. For establishments

at each efficiency bin, sales levels shrink around 4% due to higher wage. But, average research

intensity and product growth rate increases for all groups.

In the second experiment, I analyze the impact of competition on R&D expenditures and

the rate of innovation. Decrease in the price cost margin by a 15% increase in elasticity of

substitution has different effects on revenues and evolution of firms with different efficiency

levels. Increased elasticity of substitution increases the love of variety and causes tougher

competition in the product market. This lowers the markup charged by establishments and the
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Table 6: Counterfactual Experiments

30% R&D Subsidy 10% decrease in PCM

(% change) (% change)

Agg Incumbent Innov 8.4 -17

Entry Rate 6.7 -22

Ave Sales Growth∗ 1.0 -3.2

Wage 3.5 6.2

Average Sales -4.8 20

(By Efficiency Quartiles)

1 Quartile

Sales -3.9 -91

Research Intensity 1.1 -48

Product Growth∗ 1.9 -37

2 Quartile

Sales -4.1 -87

Research Intensity 1.2 -44

Product Growth∗ 11 -40

3 Quartile

Sales -4.1 -81

Research Intensity 1.2 -39

Product Growth 8.1 -40

4 Quartile

Sales -4.8 17

Research Intensity 2.2 -29

Product Growth∗ 6.9 -23
∗These growth rates are calculated conditional on survival.
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flow of profits for all but the most efficient establishments. Only the most efficient producers

(less than top 1% of all establishments) benefit from the increased competition and gain higher

revenues. The resulting changes in the sales can be seen in the table. Sales of the top efficiency

quartile increase by 17% and in the top 99.5 percentile of establishments increase by 33%.

On the other hand, sales of all other establishments shrink around 80%. Reallocation of labor

from less to more efficient establishments increases the wage rate. Lower profits and higher

wage rates lead to lower R&D expenditures and less innovation. This results in lower average

growth rate conditional on survival by 3%. However, higher profit rates for the most efficient

producers can compensate the higher cost of R&D and leads to 23% more product growth for

the producers in the 99.5 percentile whereas for the rest of the producers average product

growth rate decreases around 30%. Another result of the tougher market competition is lower

entry rate and lower mass of active establishments. Potential entrants find it harder to enter the

market due to higher costs of innovation. The experiment also shows that tougher competition

hurts least efficient establishments the most.

7 Conclusion

This study improves recent models of industry evolution in explaining several regularities ob-

served in the data which have been hard to capture by the existing models. Through a parsimo-

nious extension of a highly stylized model introduced by Klette and Kortum (2004), I construct

a model that succeeds in explaining: () the fat tail in the size distribution, () the independent

relation between size, age, and the hazard rate of exit, () post-entry performance of a birth

cohort, and () the negative relation between the variance of the growth rates and size. The

model is consistent with many empirical regularities. It demonstrates a good framework for

understanding the micro foundations of industry evolution and it is analytically tractable.

In this paper, I also intended to show the quantitative strength of the model in explaining

the data. The model performs well in capturing various moments of the size distribution, entry

rates, and growth rates for five 3-digit industries in Chilean Manufacturing sector. Comparison

of the five industries shows that innovation structure, the destruction rate, and efficiency type

distribution play a role in explaining the differences across industries.

In the model, establishments are defined as legal entities formed of multiple products. Their
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evolution is the sum of the evolution of each of their products. In this respect, the model

complements several existing models explaining product scope. The way the multi-product

producers are modeled here is closest to the one introduced in Bernard, Redding, and Schott

(2006a). Although the factors driving variation in size are different, both models introduce two

margins that contribute to expand establishment size. However, their model lacks a dynamic

framework and focuses on an analysis of trade liberalization.

The model has several interesting extensions that are worth pursuing. Introducing aggregate

uncertainty to the economy can extend our understanding of the response of the economy to

negative shocks and the recovery from economic slowdowns. Another fruitful area is adding

the financial side to the model. This would bring a more comprehensive understanding of

the establishment dynamics. One promising work in this field is done by Cooley and Quadrini

(2001). They show how the combination of persistent shocks and financial frictions can account

for the simultaneous dependence of the establishment dynamics on size conditional on age and

on age conditional on size. However, their model has some limitations such as not being able

to predict the effect of age on the hazard rate of exit. Finally the model could be carried into

an open economy to understand how the technology imported through intermediate products

affects the establishment and industry evolution.
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A Growth rate of  ()

Aggregate industry production function was given as

 =

µZ
∈ 

 ()
−1
 

¶ 
−1



Taking the derivative with respect to time, I get
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̇ =


 − 1
µZ

∈ 

 ()
−1
 

¶ 
−1−1µZ

∈ 

 − 1


 ()
−1

−1

 ()
̇ ()

 ()


¶


Since for every product   () =  and  is constant I get
̇()

()
=  and

̇

=  Since 

is also growing at rate  and  =   =
³R

∈ 
()

1−
´ 1
1−

is constant. This implies

that  () =
̄

(−1) has to be constant. Hence, the wage rate ̄ must grow at the same rate

as the efficiency level . It’s also seen that ̄ () =
³
()



´1−


grows at rate  and hence

 () =
̄()


is constant.

B Aggregate Economy

A possible setup for the aggregate economy is given below.

Consumer’s Problem

The economy consists of a unit continuum of consumers. Intertemporal utility of a repre-

sentative consumer is

 =

Z ∞



−(−) ln

where  is the discount rate and  is the aggregate consumption at time   ln measures the

instantaneous utility at time   Every consumer maximizes utility subject to an intertemporal

budget constraint Z ∞



−[−]
  ≤

Z ∞



−[−]̄ +

where  =
R 
0
 is the aggregate interest rate up to time  , 

 is the price of the final

consumption good , ̄ is the wage rate, and is the value of the household’s asset holdings.

Total value of spending at time  is  = 
   The optimization problem of the consumer

yields

̇


=  − 

Final Good Producer

The final good sector is perfectly competitive. Cobb-Douglas production function for this

sector is given as

 = 

 

1−


where  is the consumption of the homogeneous good and  is the consumption of the com-

posite good. Let 
 and  represent the prices of these goods respectively. Profit maximizing

allocations of these goods are given as

 = 

 




and  = (1− )

 





The only factor in production is labor which is perfectly mobile across sectors and across estab-

lishments in the composite good sector. Homogeneous good sector is also perfectly competitive

and one unit of output requires a single unit of labor implying 
 = ̄.
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In this setup, the relation between the growth rates of composite good industry and ag-

gregate economy can be easily acquired. Implementing the demand values of  and  into

aggregate production function, I get

 =

µ


 




¶ µ
(1− )


 



¶1−
which can be simplified to

 (1− )
1−


 =

¡



¢

1−
 

Taking the time derivatives of both sides of this equation, I get

̇





= 
̇





+ (1− )
̇





Since wage grows at rate  and
̇

= 0 I get

̇





=  Then using  =  = (1−)
 

I find the growth rate of the final good

 =
̇



=
̇



− ̇





=  −  = (1− )

Following this result, growth rate of the homogenous good industry is

 =  + (1− ) 

 =
1


((1− ) − (1− ) ) = 0

Finally, the growth rate of  = 
  =  (1− ), as defined in the consumer’s problem

is equal to  This implies that  =  and it is constant.

C Value Function Solution

Implementing the conjectured value function into equation 5, I get



µ
 ()

 + 
+ ()

¶
 = max

 ≥ 0
{ ()− ()

+

µ
 ()

 + 
+ ()

¶
− 

µ
 ()

 + 
+ ()

¶
}

After cancelling  in both side of the equation, I get

( + )

µ
 ()

 + 
+ ()

¶
= max

 ≥ 0

½
 ()− () + 

µ
 ()

 + 
+ ()

¶¾
( + ) () = max

 ≥ 0

½


µ
 ()

 + 
+ ()

¶
− ()

¾
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D Relations between Hazard Rate of Exit, Size and Age

Lemma 1 For all   0, (− )  (−)−1


and (−)−1


is strictly increasing in .

Proof. Using l’Hopital’s rule, lim
→0

(−)−1


= lim
→0

(−)(−)
1

= (− )  Taking the derivative of

the term with respect to , I get





µ
(−) − 1



¶
=

(−) (− ) − ¡(−) − 1¢
2

=
(−)((− ) − 1) + 1

2


It will be sufficient to show that for ∀  0 (−)((− )  − 1) + 1  0. Defining  =

(− )   0 I need to show −  + 1  0

Taylor series expansion of  = 1+ 
1!
+ 2

2!
+ 3

3!
 for −∞   ∞ Implementing this into

the inequality above, I get



µ
1 +



1!
+

2

2!
+

3

3!
+ 

¶
−
µ
1 +



1!
+

2

2!
+

3

3!


¶
+ 1

= 2
µ
1− 1

2!

¶
+ 3

µ
1

2!
− 1

3!

¶
+ + 

µ
1

(− 1)! −
1

!

¶
+ 

Since
³

1
(−1)! − 1

!

´
 0 for   1 the inequality holds. Note that  → ∞ only when  → ∞

and as →∞ lim
→∞

(−)−1


= lim
→∞

(−)(−)
1

=∞ under which the inequality also holds.

Lemma 2 For all   0 the parameter of the size distribution  () increases in inno-

vation intensity  (i.e.
()


 0).

Proof. In equation 13, it was shown that the parameter of the size distribution  () =
(1−−(−))
−−(−) . Then

 ()


=

¡
1− −(−) − −(−)

¢ ¡
− −(−)

¢− ¡− −(−)
¢ ¡−−(−) − −(−)

¢
(− −(−))2

=

¡
− −(−)

¢
+
¡−−(−) − −(−)

¢ ¡
− −(−) − + −(−)

¢
(− −(−))2

=

¡
− −(−)

¢
+
¡−−(−) − −(−)

¢
(− )

(− −(−))2


After the cancellations the derivative simplifies to

 ()


=


¡
1− −(−)

¢− −(−) (− )

(− −(−))2


I need to show that this term is greater than zero. Since
¡
− −(−)

¢2
 0 I only need to
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show that


¡
1− −(−)

¢
 −(−) (− )


¡
(−) − 1¢


  (− ) 

Using the result of Lemma 1, as → 0 (−)−1


→ (− )  Hence, the inequality holds. Since




³
(−)−1



´
 0 the inequality holds for ∀  0

Proposition 1 Hazard rate of exit  ( ) decreases in age conditional on size and

decreases in size conditional on age for all ages and sizes (   0 and   0).

Proof. The proposition has two parts. First I will prove that conditional on size, hazard rate

of exit decreases in age.

Klette and Kortum (2004) show that 0 ()  0 In Lemma 2, I showed that ()


 0 Also,

Klette and Kortum (2004) prove that  is uniquely determined for the profit per product 

values. In this model, since  is uniquely determined by the efficiency level   is increasing

in 

At any size 

 =



³
(−1)



´−1 
Among the establishments with size  more efficient producers (with higher ) will own fewer

products.

To simplify the proof, I assume that there are two types of establishments with low and

high efficiency levels { }. Denote the age of the low-type producer as  and high-type
as  For any  ≥   () ≥  () ≥  ()  Since  is the parameter of the geometric

distribution23, this relation implies that size distribution for high type producers stochastically

dominates the size distribution of low types.

 ()   ()⇒ 1−  ()

 1−  ()




Note that  is a monotonically increasing function in time. Hence low efficiency producers

being more likely to have more products than the high efficiency producers is possible when

   In this case, when the difference between  and  is large enough

 ()   ()

1−  ()


 1−  ()



Klette and Kortum (2004) show that the hazard rate of exit at age  is  (1−  ())  Using the

conclusion that at among the producers with size     and  ()   (), the hazard

rate of exit is lower for the older producers,

 (1−  ())   (1−  ()) 

23Probability mass function of geometric distribution is Pr( = ) = (1− ) −1 Cumulative distribution
is Pr( ≤ ) = 1− 
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The second part of the proposition is more straightforward. At any age ,  ()   ()

because  is increasing in  Hence, more efficient producers are more likely to have more

products and are less likely to exit

 (1−  ())   (1−  ()) 
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E Pre-exit Behavior of Establishments

Proposition 2 Consider a cohort of establishments all entering at the same time. At any

age  ≥ 1 within this cohort, establishments that survive longer are larger in size than the
exiting establishments (i.e. for  representing the establishment size,  representing the time

of the exit, ∆  0 0 ≤     [ () | = ] ≤  [ () | = +∆]).

Proof. At the startup ( = 0), all establishments start with a single product. From equation

16, size of a −type establishment relative to aggregate expenditure at the startup will be
1 () =

³
()



´1−
. For any   ,  [1 ()]   [1 ()]  Also, since −type producers

are more innovative24, they’re less likely to exit than the −type producers. Hence, more
efficient producers start larger and they are more likely to survive longer. This generates the

dispersion at the startup.

This difference between high and low efficient producers persists through their life spans.

Klette and Kortum (2004) show that expected size of an establishment at any age , conditional

on survival is given as
∞X
=1


 (; 1|)

1− 0 (; 1|) =
1

1−  (|) 

At any age   0 comparing establishments with efficiency levels     [ () |] 

 [ () |] and  (1−  ( ))   (1−  ( ))  Since the revenue per product is also

higher for the more efficient producers, we get  [ ()]   [ ()] 

Now consider any two establishment at age  of the same efficiency level. For an estab-

lishment that exits at time    and ∆  0 instantaneous hazard rate of exit is given as25

Pr ( = ) =
̇0(;1)

1−0(;1) =  (1−  ()). This probability increases in time. Then the expected

size of a −type establishment at age  conditional on exiting at    is

 [ () | = ] =

∞X
=1


 (; 1)

 (1−  ())


For ∀  ∆  0
1

 (1−  ())


1

 (1−  (+∆))


which leads to  [ () | = ]   [ () | = +∆] for ∀  0

24Klette and Kortum (2004) show that innovation rate  increases in profit  which increases in efficiency

rate 
25For simplicity I drop the efficiency level from the equations that will follow.
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F Industry Comparison

Figure 11: Size Distribution of Industries
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Figure 12: Graphs on Industry Comparison

2
0

0
0

4
0

0
0

8
0

0
0

1
6

0
0

0
 S

a
le

s

79-82 83-86 87-90 91-94 95-98
Years

Food Textile Wood Paper Metal

Average Sales Across Industries

5
0

0
0

1
0

0
0

0
2

0
0

0
0

4
0

0
0

0
S

td
e

v

79-82 83-86 87-90 91-94 95-98
Years

Food Textile Wood Paper Metal

Standard Deviation of Sales Across Industries

 

.4
.6

.8
1

1.
2

S
ke

w
n

e
ss

79-82 83-86 87-90 91-94 95-98
Years

Food Textile

Wood Paper
Metal

 Skewness of Log(Size) for Industries

Standard Deviation- Industries (wrt Industry Mean)

2.98

2.45

2.722.81

3.77

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Food Paper Textile Wood Metal

Average Entry and Exit Rates

0.075

0.093 0.096

0.054

0.063

0.092

0.067

0.082

0.060

0.091

0.000

0.020

0.040

0.060

0.080

0.100

0.120

Food Paper Textile Wood Metal

entryrate

exitrate

47



Figure 13: Capital-Output Ratio across Industries

20
40

60
80

10
0

R
a

ti
o

79 80 81 82 83 84 85 86
Years

Food Textile Wood Paper Metal

G Estimation Results for Industries

Table 7: Simulation Results
Food (311) Paper (341)

Moments Data Simulation Data Simulation

pctile(10) 128.80 73.2 107.36 45.5

pctile(25) 207.43 133 186.74 88.1

pctile(50) 346.15 368.2 380.76 295.4

pctile(75) 894.56 1217.2 1026.46 1305.7

pctile(99) 31291.11 31276 44379.6 44370

 0.054 0.043 0.063 0.064

E[g] 0.027 0.011 0.02 0.02

Std[g] 0.75 0.39 0.5 0.40

E[Y] 2427.0 2117.1 3192.10 2964.3

Std[Y] 7569.0 9912.3 13549.7 18172

Textile(321) Wood(331) Metal (381)

Moments Data Simulation Data Simulation Data Simulation

pctile(10) 106.94 118 62.50 72.3 86.2 143

pctile(25) 193.09 180.1 119.52 125.5 154.3 213.4

pctile(50) 370.63 357.2 267.54 267.8 343.8 400

pctile(75) 890.32 900.1 673.43 660.2 1021.5 908.7

pctile(99) 20498.3 20498 13421.26 13422 16141.43 16144

 0.067 0.058 0.082 0.044 0.092 0.06

E[g] -0.01 -0.02 0.05 0.045 0.017 0.015

Std[g] 0.70 0.47 0.90 0.48 0.83 0.47

E[Y] 1502.6 1530.5 1136.8 1007 1598.1 1361.4

Std[Y] 3716.4 7407.7 3552.5 4069 4052.9 6205
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Figure 14: Industry Size Distributions: Model Fit
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